You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
7.4 KiB

// Rack and pinion gears GPL (c) SASA October 2013.
//
// Very simple rack and pinion gear based on GPL code.
//
// I've made corrections to both rack and gear code I used (below) and unified
// and simplified both bits of code. Corrects the use of circular pitch so
// rack and pinion match nicely. Ammendments to the code and interface to
// simplify use and improve readability. Many bells and whistles dropped in
// favour of being dead simple. I also opted for hard wiring the pressure
// angle to 20 degrees since this seemed a kind of standard.
//
// Based on the works (thanks!): Parametric Involute Bevel and Spur Gears by
// GregFrost GNU GPL license. http://www.thingiverse.com/thing:3575 Parametric
// Modular Rack by Mark "Ckaos" Moissette GNU GPL license. (Rack based on the
// work of MattMoses and Fdavies
// http://forums.reprap.org/read.php?1,51452,52099#msg-52099 and Forrest Higgs:
//
// The originals have many fine additions such as helical gears which I've
// dropped in favour of simplicity (as befits my needs) - it wouldn't be a big
// jobs to nobble my changes backwards or their features forwards.
pi=3.1415926535897932384626433832795;
$fn=50;
// examples of usage
// include this in your code:
// use <rack_and_pinion.scad>
// then:
// a simple rack
// rack(4,20,10,1);//CP (mm/tooth), width (teeth), thickness(of base) (mm), # teeth
// a simple pinion and translation / rotation to make it mesh the rack
// translate([0,-8.5,0])rotate([0,0,360/10/2]) pinion(4,10,10,5);
rack (4,18,10,3);
translate([0,-12,0]) rotate([0,0,13]) pinion(4,8,10,4);
module rack(cp, N, width, thickness){
// cp = circular pitch - for rack = pitch in mm/per tooth
// N = number of teeth
// width = width of rack in teeth
// thickness = thickness of support under teeth (0 for no support)
a = 1.0*cp/pi; // addendum (also known as "module")
d = 1.1*cp/pi; // dedendum (this is set by a standard)
height=(d+a);
// find the tangent of pressure angle once
tanPA = tan(20);
// length of bottom and top horizontal segments of tooth profile
botL = (cp/2 - 2*d*tanPA);
topL = (cp/2 - 2*a*tanPA);
slantLng=tanPA*height;
realBase=2*slantLng+topL;
offset=topL+botL+2*slantLng;
length=(realBase+botL)*N;
supportSize=width;
translate([botL/2,0,0])
rotate([90,0,0]){
translate([0,supportSize/2,0]){
union(){
cube(size=[length,width,thickness],center=true);
for (i = [0:N-1]){
translate([i*offset-length/2+realBase/2,0,thickness/2]){
trapezoid([topL,supportSize],[realBase,supportSize],height);
}
}
}
}
}
}
module pinion (cp, N, width, shaft_diameter, backlash=0){
// cp= circular pitch - for pinion pitch in mm/per as measured along the ptich radius (~1/2 way up tooth)
// N= number of teeth
// width= width of the gear
// shaft_diameter= diameter of hole for shaft
// backlash - I think this is just a bodge for making things fit when printed but I never tested it
if (cp==false && diametral_pitch==false)
echo("MCAD ERROR: pinion module needs either a diametral_pitch or cp");
//Convert diametrial pitch to our native circular pitch
cp = (cp!=false?cp:180/diametral_pitch);
// Pitch diameter: Diameter of pitch circle.
pitch_diameter = N * cp / pi;
pitch_radius = pitch_diameter/2;
echo ("Teeth:", N, " Pitch radius:", pitch_radius);
// Base Circle
base_radius = pitch_radius*cos(20);
// Addendum: Radial distance from pitch circle to outside circle.
addendum = cp/pi;
//Outer Circle
outer_radius = pitch_radius+addendum;
// Dedendum: Radial distance from pitch circle to root diameter
dedendum = addendum*1.1;
// Root diameter: Diameter of bottom of tooth spaces.
root_radius = pitch_radius-dedendum;
backlash_angle = backlash / pitch_radius * 180 / pi;
half_thick_angle = (360 / N - backlash_angle) / 4;
difference(){
linear_extrude (height=width, convexity=10, twist=0)
pinion_shape(N, pitch_radius = pitch_radius, root_radius = root_radius,
base_radius = base_radius, outer_radius = outer_radius,
half_thick_angle = half_thick_angle, involute_facets=0);
translate([0,0,-1]) cylinder(r=shaft_diameter/2,h=2+width);
}
echo("Root radius =",root_radius,"\nPitch radius=",pitch_radius,"\n Tip radius=",outer_radius,"\n");
}
module pinion_shape ( N, pitch_radius, root_radius, base_radius, outer_radius, half_thick_angle, involute_facets) {
union(){
rotate (half_thick_angle) circle ($fn=N*2, r=root_radius);
for (i = [1:N]) {
rotate ([0,0,i*360/N]) {
involute_pinion_tooth (
pitch_radius = pitch_radius,
root_radius = root_radius,
base_radius = base_radius,
outer_radius = outer_radius,
half_thick_angle = half_thick_angle,
involute_facets=involute_facets);
}
}
}
}
module involute_pinion_tooth ( pitch_radius, root_radius, base_radius, outer_radius, half_thick_angle, involute_facets) {
min_radius = max (base_radius,root_radius);
pitch_point = involute (base_radius, involute_intersect_angle (base_radius, pitch_radius));
pitch_angle = atan2 (pitch_point[1], pitch_point[0]);
centre_angle = pitch_angle + half_thick_angle;
start_angle = involute_intersect_angle (base_radius, min_radius);
stop_angle = involute_intersect_angle (base_radius, outer_radius);
res=(involute_facets!=0)?involute_facets:($fn==0)?5:$fn/4;
union () {
for (i=[1:res])
assign ( point1=involute (base_radius,start_angle+(stop_angle - start_angle)*(i-1)/res), point2=involute (base_radius,start_angle+(stop_angle - start_angle)*i/res)) {
assign (
side1_point1=rotate_point (centre_angle, point1),
side1_point2=rotate_point (centre_angle, point2),
side2_point1=mirror_point (rotate_point (centre_angle, point1)),
side2_point2=mirror_point (rotate_point (centre_angle, point2))) {
polygon ( points=[[0,0],side1_point1,side1_point2,side2_point2,side2_point1], paths=[[0,1,2,3,4,0]]);
}
}
}
}
// Mathematical Functions
//===============
// Finds the angle of the involute about the base radius at the given distance (radius) from it's center.
//source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html
function involute_intersect_angle (base_radius, radius) = sqrt (pow (radius/base_radius, 2) - 1) * 180 / pi;
// Calculate the involute position for a given base radius and involute angle.
function rotated_involute(rotate,base_radius,involute_angle)=[cos(rotate)*involute(base_radius, involute_angle)[0]+sin(rotate)*involute(base_radius, involute_angle)[1],cos(rotate)*involute(base_radius, involute_angle)[1]-sin(rotate)*involute(base_radius, involute_angle)[0]];
function mirror_point(coord)=[coord[0],-coord[1]];
function rotate_point(rotate,coord)=[cos(rotate)*coord[0]+sin(rotate)*coord[1],cos(rotate)*coord[1]-sin(rotate)*coord[0]];
function involute (base_radius, involute_angle)=[base_radius*(cos(involute_angle)+involute_angle*pi/180*sin(involute_angle)),base_radius*(sin(involute_angle)-involute_angle*pi/180*cos(involute_angle))];
module trapezoid(top,base,height){
//echo ("test",base[0]);
basePT1=[ -base[0]/2, base[1]/2, 0];
basePT2=[ base[0]/2, base[1]/2, 0];
basePT3=[ base[0]/2, -base[1]/2, 0];
basePT4=[ -base[0]/2, -base[1]/2, 0];
topPT1=[ -top[0]/2, top[1]/2, height];
topPT2=[ top[0]/2, top[1]/2, height];
topPT3=[ top[0]/2, -top[1]/2, height];
topPT4=[ -top[0]/2, -top[1]/2, height];
polyhedron(points=[ basePT1, basePT2, basePT3, basePT4, topPT1, topPT2, topPT3, topPT4],triangles=[[0,1,2], [0,2,3],[3,7,0], [7,4,0],[1,6,2], [1,5,6],[2,6,3], [3,6,7],[5,1,0],[4,5,0],[7,5,4],[5,7,6]]);
}